Search results for "Frobenius manifold"
showing 5 items of 5 documents
On deformation of Poisson manifolds of hydrodynamic type
2001
We study a class of deformations of infinite-dimensional Poisson manifolds of hydrodynamic type which are of interest in the theory of Frobenius manifolds. We prove two results. First, we show that the second cohomology group of these manifolds, in the Poisson-Lichnerowicz cohomology, is ``essentially'' trivial. Then, we prove a conjecture of B. Dubrovin about the triviality of homogeneous formal deformations of the above manifolds.
Integrable systems, Frobenius manifolds and cohomological field theories
2022
In this dissertation, we study the underlying geometry of integrable systems, in particular tausymmetric bi-Hamiltonian hierarchies of evolutionary PDEs and differential-difference equations.First, we explore the close connection between the realms of integrable systems and algebraic geometry by giving a new proof of the Witten conjecture, which constructs the string taufunction of the Korteweg-de Vries hierarchy via intersection theory of the moduli spaces of stable curves with marked points. This novel proof is based on the geometry of double ramification cycles, tautological classes whose behavior under pullbacks of the forgetful and gluing maps facilitate the computation of intersection…
A construction of Frobenius manifolds from stability conditions
2018
A finite quiver $Q$ without loops or 2-cycles defines a 3CY triangulated category $D(Q)$ and a finite heart $A(Q)$. We show that if $Q$ satisfies some (strong) conditions then the space of stability conditions $Stab(A(Q))$ supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in $D(Q)$. In the case of $A_n$ evaluating the family at a special point we recover a branch of the Saito Frobenius structure of the $A_n$ singularity $y^2 = x^{n+1}$. We give examples where applying the construction to each mutation of $Q$ and evaluating the families at a special point yields a different branch of the m…
Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy
2021
We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…
2021
Abstract We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli…